
rush Documentation
Release 2021.04.0

Ian Stapleton Cordasco

Mar 27, 2023

Contents

1 Overview 1
1.1 Default Algorithms . 1
1.2 Default Storage Backends . 1

2 Installation 3

3 Quickstart 5

4 Table of Contents 7
4.1 Using Rush’s Throttle . 7
4.2 Rush’s Rate Limiting Algorithms . 9
4.3 Rush’s Storage Backends . 11
4.4 User Contributed Modules . 13
4.5 Usage Examples with Rush . 14
4.6 Rush’s Release History . 16

Index 19

i

ii

CHAPTER 1

Overview

rush is a library that provides a composable and extensible framework for implementing rate limiting algorithms and
storage backends. By default, rush comes with two algorithms for rate limiting and two backends for storage. The
backends should work with all of the limiters so there should be no need for compatibility checking.

It also ships with a complete set of typestubs in the code as rush requires Python 3.6 or newer.

1.1 Default Algorithms

By default, rush comes with two algorithms:

• Periodic rate-limiting based on the period of time specified.

• Generic Cell Rate Limiting which is based on the algorithm defined for Asynchronous Transfer Mode networks.

Both limiters are implemented in pure Python.

1.2 Default Storage Backends

By default, rush comes with two storage backends:

• Dictionary based - primarily used for integration testing within the library itself.

• Redis

More storage backends could be implemented as necessary.

1

rush Documentation, Release 2021.04.0

2 Chapter 1. Overview

CHAPTER 2

Installation

pip install rush

pipenv install rush

3

rush Documentation, Release 2021.04.0

4 Chapter 2. Installation

CHAPTER 3

Quickstart

Since rush aims to be composable, its preliminary API can be considered rough and experimental. These imports will
not break, but porcelain may be added at a future date.

from rush import quota
from rush import throttle
from rush.limiters import periodic
from rush.stores import dictionary

t = throttle.Throttle(
limiter=periodic.PeriodicLimiter(

store=dictionary.DictionaryStore()
),
rate=quota.Quota.per_hour(

count=5000,
burst=500,

),
)

limit_result = t.check('expensive-operation/user@example.com', 1)
print(limit_result.limited) # => False
print(limit_result.remaining) # => 5499
print(limit_result.reset_after) # => 1:00:00

5

rush Documentation, Release 2021.04.0

6 Chapter 3. Quickstart

CHAPTER 4

Table of Contents

4.1 Using Rush’s Throttle

The primary interface intended to be used by Rush’s users is the Throttle class. It does the heavy lifting in ensuring
that the limiter is used and works to abstract away the underlying moving pieces.

class rush.throttle.Throttle(rate: rush.quota.Quota, limiter: rush.limiters.base.BaseLimiter)
The class that acts as the primary interface for throttles.

This class requires the intantiated rate quota and limiter and handles passing the right arguments to the limiter.

limiter
The instance of the rate limiting algorithm that should be used by the throttle.

rate
The instantiated Quota that tells the throttle and limiter what the limits and periods are for rate limiting.

check(key: str, quantity: int)→ rush.result.RateLimitResult
Check if the user should be rate limited.

Parameters

• key (str) – The key to use for rate limiting.

• quantity (int) – How many resources is being requested against the rate limit.

Returns The result of calculating whether the user should be rate-limited.

Return type RateLimitResult

clear(key: str)→ rush.result.RateLimitResult
Clear any existing limits for the given key.

Parameters key (str) – The key to use for rate limiting that should be cleared.

Returns The result of resetting the rate-limit.

Return type RateLimitResult

7

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

rush Documentation, Release 2021.04.0

peek(key: str)→ rush.result.RateLimitResult
Peek at the user’s current rate-limit usage.

Note: This is equivalent to calling check() with a quantity of 0.

Parameters key (str) – The key to use for rate limiting.

Returns The current rate-limit usage.

Return type RateLimitResult

class rush.quota.Quota(period: datetime.timedelta, count: int, maximum_burst: int = 0)
The definition of a user’s quota of resources.

period
The time between equally spaced requests. This must be greater than 0 seconds.

count
The number of requests to a resource allowed in the period. This must be greater than 0.

maximum_burst
The number of requests that will be allowed to exceed the rate in a single burst. This must be greater than
or equal to 0 and defaults to 0.

limit
Return the calculated limit including maximum burst.

classmethod per_day(count: int, *, maximum_burst: int = 0)→ Q
Create a quota based on the number allowed per day.

Parameters count (int) – The number of requests allowed per day.

Returns A new quota.

Return type Quota

classmethod per_hour(count: int, *, maximum_burst: int = 0)→ Q
Create a quota based on the number allowed per hour.

Parameters count (int) – The number of requests allowed per hour.

Returns A new quota.

Return type Quota

classmethod per_minute(count: int, *, maximum_burst: int = 0)→ Q
Create a quota based on the number allowed per minute.

Parameters count (int) – The number of requests allowed per minute.

Returns A new quota.

Return type Quota

classmethod per_second(count: int, *, maximum_burst: int = 0)→ Q
Create a quota based on the number allowed per second.

Parameters count (int) – The number of requests allowed per second.

Returns A new quota.

Return type Quota

8 Chapter 4. Table of Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

rush Documentation, Release 2021.04.0

class rush.result.RateLimitResult(limit: int, limited: bool, remaining: int, reset_after: date-
time.timedelta, retry_after: datetime.timedelta)

A result of checking a ratelimit.

The attributes on this object are:

limit
The integer limit that was checked against, e.g., if the user’s ratelimit is 10,000 this value will be 10,000
regardless of how much they have consumed.

limited
Whether or not the user should be ratelimited (a.k.a., throttled).

remaining
The integer representing how much of the user’s ratelimit is left. This should be the number of requests
made during the time period, N, subtracted from the limit, L, or L - N.

reset_after
This will be a timedelta representing how much time is left until the ratelimit resets. For example if
the ratelimit will reset in 800ms then this might look like:

datetime.timedelta(0, 0, 800000)
== datetime.timedelta(milliseconds=800)

retry_after
This will be a timedelta representing the length of time after which a retry can be made.

resets_at(from_when: Optional[datetime.datetime] = None)→ datetime.datetime
Calculate the reset time from UTC now.

Returns The UTC timezone-aware datetime representing when the limit resets.

retry_at(from_when: Optional[datetime.datetime] = None)→ datetime.datetime
Calculate the retry time from UTC now.

Returns The UTC timezone-aware datetime representing when the user can retry.

4.2 Rush’s Rate Limiting Algorithms

By default, rush includes the following algorithms:

• Generic Cell Rate Limiting

• Redis Lua Generic Cell rate Limiting

• Periodic

It also has a base class so you can create your own.

class rush.limiters.gcra.GenericCellRatelimiter
This class implements a very specific type of “leaky bucket” designed for Asynchronous Transfor Mode net-
works called Generic Cell Rate Algorithm. The algorithm itself can be challenging to understand, so let’s first
cover the benefits:

• It doesn’t require users to sit idle for a potentially long period of time while they wait for their period to
be done.

• It leaks the used amount of resources based off a clock and requires no extra threads, processes, or some
other process to leak things.

• It is fast, even implemented purely in Python.

4.2. Rush’s Rate Limiting Algorithms 9

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://en.wikipedia.org/wiki/Leaky_bucket
https://en.wikipedia.org/wiki/Generic_cell_rate_algorithm

rush Documentation, Release 2021.04.0

This can be thought of as having a sliding window where users have some number of requests they can make.
This means that even as time moves, your users can still make requests instead of waiting terribly long.

Example instantiation:

from rush.limiters import gcra
from rush.stores import dictionary

gcralimiter = gcra.GenericCellRatelimiter(
store=dictionary.DictionaryStore()

)

class rush.limiters.redis_gcra.GenericCellRatelimiter
This class implements a very specific type of “leaky bucket” designed for Asynchronous Transfor Mode net-
works called Generic Cell Rate Algorithm. The algorithm itself can be challenging to understand, so let’s first
cover the benefits:

• It doesn’t require users to sit idle for a potentially long period of time while they wait for their period to
be done.

• It leaks the used amount of resources based off a clock and requires no extra threads, processes, or some
other process to leak things.

• It is fast, even implemented purely in Python.

This can be thought of as having a sliding window where users have some number of requests they can make.
This means that even as time moves, your users can still make requests instead of waiting terribly long.

This relies on Lua scripts that are loaded into Redis (and only compatible with Redis) and called from Python.
The Lua scripts are borrowed from https://github.com/rwz/redis-gcra

Since this is implemented only for Redis this requires you to use RedisStore.

Example instantiation:

from rush.limiters import redis_gcra
from rush.stores import redis

gcralimiter = redis_gcra.GenericCellRatelimiter(
store=redis.RedisStore("redis://localhost:6379")

)

class rush.limiters.periodic.PeriodicLimiter
This class uses a naive way of allowing a certain number of requests for the specified period of time. If your
quota has a period of 60 seconds and a limit (count and maximum burst) of 60, then effectively a user can make
60 requests every 60 seconds - or 1 request per second. For example, let’s say a user makes a request at 12:31:50
until 12:32:50, they would only have 59 requests remaining. If by 12:32:10 the user has made 60 requests, then
they still have to wait until 12:32:50 before they can make more.

Example instantiation:

from rush.limiters import periodic
from rush.stores import dictionary

periodiclimiter = periodic.PeriodicLimiter(
store=dictionary.DictionaryStore()

)

10 Chapter 4. Table of Contents

https://en.wikipedia.org/wiki/Leaky_bucket
https://en.wikipedia.org/wiki/Generic_cell_rate_algorithm
https://github.com/rwz/redis-gcra

rush Documentation, Release 2021.04.0

4.2.1 Writing Your Own Algorithm

Rush specifies a very small set of methods that a Rate Limiter needs to implement in order to be usable in a throttle.

class rush.limiters.base.BaseLimiter(store: rush.stores.base.BaseStore)
Base object defining the interface for limiters.

Users can inherit from this class to implement their own Rate Limiting Algorithm. Users must define the
rate_limit and reset methods. The signatures for these methods are:

def rate_limit(
self, key: str, quantity: int, rate: quota.Quota

) -> result.RateLimitResult:
pass

def reset(self, key: str, rate: quota.Quota) -> result.RateLimitResult:
pass

The rate parameter will always be an instance of Quota.

store
This is the passed in instance of a Storage Backend. The instance must be a subclass of BaseStore.

rate_limit(key: str, quantity: int, rate: rush.quota.Quota)→ rush.result.RateLimitResult
Apply the rate-limit to a quantity of requests.

reset(key: str, rate: rush.quota.Quota)→ rush.result.RateLimitResult
Reset the rate-limit for a given key.

4.3 Rush’s Storage Backends

By default, rush includes the following storage backend:

• In Memory Python Dictionary

• Redis

It also has a base class so you can create your own.

class rush.stores.dictionary.DictionaryStore
This class implements a very simple, in-memory, non-permanent storage backend. It naively uses Python’s
in-built dictionaries to store rate limit data.

Warning: This is not suggested for use outside of testing and initial proofs of concept.

class rush.stores.redis.RedisStore
This class requires a Redis URL in order to store rate limit data in Redis.

Note: This store requires installing rush with the “redis” extra, e.g.,

pip install -U rush[redis]

Example usage looks like:

4.3. Rush’s Storage Backends 11

rush Documentation, Release 2021.04.0

from rush.stores import redis as redis_store

s = redis_store.RedisStore(
url="redis://user:password@host:port",

)

Upon initialization, the store will create a Redis client and use that to store everything.

Further, advanced users can specify configuration parameters for the Redis client that correspond to the param-
eters in the redis-py documentation

4.3.1 Writing Your Own Storage Backend

Rush specifies a small set of methods that a backend needs to implement.

class rush.stores.base.BaseStore

Users must inherit from this class to implement their own Storage Backend. Users must define
compare_and_swap, set, and get methods with the following signatures:

def get(self, key: str) -> typing.Optional[limit_data.LimitData]:
pass

def set(
self, *, key: str, data: limit_data.LimitData

) -> limit_data.LimitData:
pass

def compare_and_swap(
self,

*,
key: str,
old: typing.Optional[limit_data.LimitData],
new: limit_data.LimitData,

) -> limit_data.LimitData:
pass

compare_and_swap must be atomic.

The way these methods communicate data back and forth between the backend and limiters is via the LimitData
class.

class rush.limit_data.LimitData(used, remaining, created_at: Union[str, datetime.datetime] =
NOTHING, *, time: Union[str, datetime.datetime, None] =
None)

Data class that organizes our limit data for storage.

This is a data class that represents the data stored about the user’s current rate usage. It also has convenience
methods for default storage backends.

created_at
A timezone-aware datetime object representing the first time we saw this user.

remaining
How much of the rate quota is left remaining.

time
An optional value that can be used for tracking the last time a request was checked by the limiter.

12 Chapter 4. Table of Contents

https://redis-py.readthedocs.io/en/latest/index.html#redis.Redis
https://docs.python.org/3/library/datetime.html#datetime.datetime

rush Documentation, Release 2021.04.0

used
The amount of the rate quota that has already been consumed.

asdict()→ Dict[str, str]
Return the data as a dictionary.

Returns A dictionary mapping the attributes to string representations of the values.

copy_with(*, used: Optional[int] = None, remaining: Optional[int] = None, created_at: Op-
tional[datetime.datetime] = None, time: Optional[datetime.datetime] = None) →
rush.limit_data.LimitData

Create a copy of this with updated values.

Parameters

• used (int) –

• remaining (int) –

• created_at (datetime.datetime) –

• time (datetime.datetime) –

Returns A new copy of this instance with the overridden values.

Return type LimitData

4.4 User Contributed Modules

4.4.1 Rush’s Throttle Decorator

ThrottleDecorator is an inferace which allows Rush’s users to limit calls to a function using a decorator. Both
synchronous and asynchronous functions are supported.

class rush.contrib.decorator.ThrottleDecorator(throttle: rush.throttle.Throttle)
The class that acts as a decorator used to throttle function calls.

This class requires an intantiated throttle with which to limit function invocations.

throttle
The Throttle which should be used to limit decorated functions.

sleep_and_retry(func: Callable)→ Callable
Wrap function with a naive sleep and retry strategy.

Parameters func (Callable) – The Callable to decorate.

Returns Decorated function.

Return type Callable

Example

from rush import quota
from rush import throttle
from rush.contrib import decorator
from rush.limiters import periodic
from rush.stores import dictionary

(continues on next page)

4.4. User Contributed Modules 13

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

rush Documentation, Release 2021.04.0

(continued from previous page)

t = throttle.Throttle(
limiter=periodic.PeriodicLimiter(

store=dictionary.DictionaryStore()
),
rate=quota.Quota.per_second(

count=1,
),

)

@decorator.ThrottleDecorator(throttle=t)
def ratelimited_func():

return True

try:
for _ in range(2):

ratelimited_func()
except decorator.ThrottleExceeded as e:

limit_result = e.result
print(limit_result.limited) # => True
print(limit_result.remaining) # => 0
print(limit_result.reset_after) # => ~0:00:01

4.5 Usage Examples with Rush

To make it clearer how rush can be used, we collect examples of how one might integrate Rush into their project.

Warning: Many of these are written by the maintainers as a immediate proof of concept rather than examples of
best practices using those frameworks.

Other framework examples are very welcome. The maintainers may not have time, however, to keep them up-to-date
so your continued contributions to keep them relevant is appreciated.

4.5.1 Flask

Flask is a popular micro-framework for writing web services. In our examples directory, we have a Flask application
with a single route.

In the example, we use the requestor’s IP address and optional credentials to throttle their traffic. We define both
anonymous and authenticated rate limits.

We use the RateLimitResult object to determine how to respond and to generate the RateLimit headers on the
response. Here are some relevant excerpts:

examples/flask/src/limiterapp/__init__.py
REDIS_URL = os.environ.get("REDIS_URL")
if REDIS_URL:

store = redis_store.RedisStore(url=REDIS_URL)
else:

store = dict_store.DictionaryStore()

(continues on next page)

14 Chapter 4. Table of Contents

https://github.com/sigmavirus24/rush/tree/master/examples

rush Documentation, Release 2021.04.0

(continued from previous page)

anonymous_quota = quota.Quota.per_hour(50)
authenticated_quota = quota.Quota.per_hour(5000, maximum_burst=500)
limiter = gcra.GenericCellRatelimiter(store=store)
anonymous_throttle = throttle.Throttle(rate=anonymous_quota, limiter=limiter)
authenticated_throttle = throttle.Throttle(

rate=authenticated_quota, limiter=limiter
)

Note: We only allow the dictionary store above because this is meant as an example and we want users to be able to
not require Redis when playing around with this.

examples/flask/src/limiterapp/views.py
auth = request.authorization
ip_address = request.headers.get("X-Forwarded-For", request.remote_addr)
username = "anonymous"
response = flask.Response()

if auth and auth.username and auth.password:
throttle = limiterapp.authenticated_throttle
username = auth.username
log.info("sent credentials", username=auth.username)

userkey = f"{username}@{ip_address}"
result = throttle.check(key=userkey, quantity=1)
response.headers.extend(

[
("X-RateLimit-Limit", result.limit),
("X-RateLimit-Remaining", result.remaining),
("X-RateLimit-Reset", result.resets_at().strftime(time_format)),
("X-RateLimit-Retry", result.retry_at().strftime(time_format)),

]
)

examples/flask/src/limiterapp/views.py
if result.limited:

log.info("ratelimited", username=username)
response.status_code = 403

else:
response.status_code = 200
response.data = f"Hello from home, {username}"

Playing with this example

To set up this example you need pipenv. You can cd into the directory and run

pipenv install

To run the server you can run

pipenv run gunicorn -w4 limiterapp.views:app

If you want to try rush out with Redis, you should set up a .env file like so:

4.5. Usage Examples with Rush 15

https://pipenv.readthedocs.io/en/latest/

rush Documentation, Release 2021.04.0

cp env.template .env
edit .env to include your REDIS_URL
pipenv run gunicorn -w4 limiterapp.views:app

You can also run black against this project:

pipenv run black -l 78 --py36 --safe src/ test/

If you want to contribute better Flask practices, please do so. The maintainers of rush know that it’s plausible to use
app.before_request and middleware to handle this but wanted to keep the example small-ish and reasonably
contained. If you think the existing example is hard to understand, we welcome any contributions to make it easier
and clearer.

4.6 Rush’s Release History

4.6.1 2021.04.0 - Released on 2021-04-01

Backwards Incompatibilities

• Add compare_and_swap method to Base store definition for atomic operations.

This allows limiters to ensure there are no race-conditions by having the stores provide atomic interfaces. See
also BaseStore.

Bugs Fixed

• Update built-in limiters to rely on compare_and_swap method from storage backends.

Features

• Add a decorator in rush.contrib.decorator written by Jude188 for potentially easier use of the library.
See also ThrottleDecorator.

4.6.2 2018.12.1 - Released on 2018-12-25

I realized I missed one crucial thing for production usage.

Bugs Fixed

• Rely on stores to set the current time and provide the clock for limiters.

4.6.3 2018.12.0 - Released on 2018-12-22

This is the initial release of the rush library. It includes a rough API for using different rate limiting algorithms with
storage backends. It aims to provide a composable set of algorithms and storage backends for use when rate-limiting
(or throttling) activities. This release includes support for:

• Periodic Rate Limiting

16 Chapter 4. Table of Contents

https://github.com/Jude188

rush Documentation, Release 2021.04.0

• Generic Cell Rate Limiting

• Redis Storage

• In-memory Python Dictionary Storage

4.6. Rush’s Release History 17

rush Documentation, Release 2021.04.0

18 Chapter 4. Table of Contents

Index

A
asdict() (rush.limit_data.LimitData method), 13

B
BaseLimiter (class in rush.limiters.base), 11

C
check() (rush.throttle.Throttle method), 7
clear() (rush.throttle.Throttle method), 7
copy_with() (rush.limit_data.LimitData method), 13
count (rush.quota.Quota attribute), 8
created_at (rush.limit_data.LimitData attribute), 12

L
limit (rush.quota.Quota attribute), 8
limit (rush.result.RateLimitResult attribute), 9
LimitData (class in rush.limit_data), 12
limited (rush.result.RateLimitResult attribute), 9
limiter (rush.throttle.Throttle attribute), 7

M
maximum_burst (rush.quota.Quota attribute), 8

P
peek() (rush.throttle.Throttle method), 7
per_day() (rush.quota.Quota class method), 8
per_hour() (rush.quota.Quota class method), 8
per_minute() (rush.quota.Quota class method), 8
per_second() (rush.quota.Quota class method), 8
period (rush.quota.Quota attribute), 8

Q
Quota (class in rush.quota), 8

R
rate (rush.throttle.Throttle attribute), 7
rate_limit() (rush.limiters.base.BaseLimiter

method), 11

RateLimitResult (class in rush.result), 8
remaining (rush.limit_data.LimitData attribute), 12
remaining (rush.result.RateLimitResult attribute), 9
reset() (rush.limiters.base.BaseLimiter method), 11
reset_after (rush.result.RateLimitResult attribute), 9
resets_at() (rush.result.RateLimitResult method), 9
retry_after (rush.result.RateLimitResult attribute), 9
retry_at() (rush.result.RateLimitResult method), 9
rush.limiters.gcra.GenericCellRatelimiter

(built-in class), 9
rush.limiters.periodic.PeriodicLimiter

(built-in class), 10
rush.limiters.redis_gcra.GenericCellRatelimiter

(built-in class), 10
rush.stores.base.BaseStore (built-in class),

12
rush.stores.dictionary.DictionaryStore

(built-in class), 11
rush.stores.redis.RedisStore (built-in

class), 11

S
sleep_and_retry()

(rush.contrib.decorator.ThrottleDecorator
method), 13

store (rush.limiters.base.BaseLimiter attribute), 11

T
Throttle (class in rush.throttle), 7
throttle (rush.contrib.decorator.ThrottleDecorator

attribute), 13
ThrottleDecorator (class in

rush.contrib.decorator), 13
time (rush.limit_data.LimitData attribute), 12

U
used (rush.limit_data.LimitData attribute), 12

19

	Overview
	Default Algorithms
	Default Storage Backends

	Installation
	Quickstart
	Table of Contents
	Using Rush’s Throttle
	Rush’s Rate Limiting Algorithms
	Rush’s Storage Backends
	User Contributed Modules
	Usage Examples with Rush
	Rush’s Release History

	Index

